Quantized Feature Distillation for Network Quantization

نویسندگان

چکیده

Neural network quantization aims to accelerate and trim full-precision neural models by using low bit approximations. Methods adopting the aware training (QAT) paradigm have recently seen a rapid growth, but are often conceptually complicated. This paper proposes novel highly effective QAT method, quantized feature distillation (QFD). QFD first trains (or binarized) representation as teacher, then quantize knowledge (KD). Quantitative results show that is more flexible (i.e., friendly) than previous methods. surpasses existing methods noticeable margin on not only image classification also object detection, albeit being much simpler. Furthermore, quantizes ViT Swin-Transformer MS-COCO detection segmentation, which verifies its potential in real world deployment. To best of our knowledge, this time vision transformers been segmentation tasks.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model compression via distillation and quantization

Deep neural networks (DNNs) continue to make significant advances, solving tasks from image classification to translation or reinforcement learning. One aspect of the field receiving considerable attention is efficiently executing deep models in resource-constrained environments, such as mobile or embedded devices. This paper focuses on this problem, and proposes two new compression methods, wh...

متن کامل

Quantized Kernel Learning for Feature Matching

Matching local visual features is a crucial problem in computer vision and its accuracy greatly depends on the choice of similarity measure. As it is generally very difficult to design by hand a similarity or a kernel perfectly adapted to the data of interest, learning it automatically with as few assumptions as possible is preferable. However, available techniques for kernel learning suffer fr...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Vector Quantization for Feature-Preserving Volume Filtering

In volume-rendering applications the input data is usually acquired by measuring some kind of physical property. The accuracy of the measurement strongly influences the quality of images produced by recent 3D visualization techniques. In practice, however, a high signal-to-noise ratio cannot always be ensured. For example, in virtual colonoscopy, CT scans are generated preferably at low radiati...

متن کامل

Feature Quantization and Pooling for Videos

Building video representations typically involves four steps: feature extraction, quantization, encoding, and pooling. While there have been large advances in feature extraction and encoding, the questions of how to quantize video features and what kinds of regions to pool them over have been relatively unexplored. To tackle the challenges present in video data, it is necessary to develop robus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i9.26354